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We construct a new mimetic tensor artificial viscosity on general polygonal meshes. The
tensor artificial viscosity is based on discretization of coordinate invariant operators, diver-
gence of a tensor and gradient of a vector. The focus of this paper is on the non-symmetric
form, div(lru), of the tensor artificial viscosity. The discretizations of this operator is
derived for the case of a full tensor coefficient l. However, in the numerical experiments,
we only use scalar l. We prove that the new tensor viscosity preserves spatial symmetry
on special meshes. We demonstrate performance of the new viscosity for the Noh implo-
sion, Sedov explosion and Saltzman piston problems on a set of various polygonal meshes
in both Cartesian and axisymmetric coordinate systems.
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1. Introduction

We are developing advanced mimetic discretizations methods for Lagrangian gasdynamics on general polygonal meshes
in both Cartesian (x,y) and axisymmetric (r,z) coordinate systems. Our particular interest is on modeling complex high-speed
flows with shocks. Modeling of such flows requires introduction of an artificial numerical viscosity [4,16]. This paper is de-
voted to development of a new mimetic artificial viscosity on general polygonal meshes.

The artificial viscosities and in particular tensor artificial viscosities have been used now for over 50 years. The interested
reader can read the seminal review paper [4] by Benson for the history of the subject and additional references. More recent
review and analysis is presented in [16,15,27]. Historical overview and comparative analysis of different approaches is be-
yond the scope of this paper. However, we would like to mention a few substantial papers: [30,3,37,18,10,31,40].

The artificial viscous force is usually an approximation of the surface integral
R
@V r � ndS, where V is the control volume

surrounding a point, n is the outward unit normal to @V, and r is a tensor. In [4], all viscosities where r has some ‘‘tensor”
features are called tensor viscosities. However, some of these ‘‘tensors” may not correspond to a consistent approximation of
any tensor differential operator. We believe that this is the main reason for strong dependence of the artificial viscosity, like
the ‘‘tensor” edge viscosity [16], on a mesh. In our opinion, to eliminate the mesh imprint, developers of new tensor artificial
viscosities have to start with approximation of a differential form or to prove that their tensor artificial viscosity is consistent
with some differential form.

In this paper, we will refer to artificial viscosity as the tensor artificial viscosity, if it is designed as an approximation of a
continuous form that involves coordinate invariant tensor operators like div(lru) or div(lD(u)), where D(u) is the symmet-
ric part of the velocity gradient. A tensor artificial viscosity of such type was proposed in [14,15]. The authors considered
both symmetric div(lD(u)) and non-symmetric div(lru) forms of the artificial viscosity. In [14], the authors showed
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advantage of their symmetric and non-symmetric tensor artificial viscosities over the ‘‘tensor” edge viscosity [16], especially
for problems where the shock front is not aligned with a mesh.

It is well known from graduate text books on continuum mechanics [41] that the stress tensor has to be symmetric to
preserve the angular momentum and objectivity (invariance under general time-dependent rotations). Therefore, it is desir-
able to derive a symmetric artificial stress tensor. This was recognized by many researches in the past. Comparison of sym-
metric and non-symmetric forms of the artificial viscosity made in [14] have shown that the symmetric form acts like a real
viscosity and leads to motion perpendicular to the shock direction for problems where no real vorticity is present but there
exists an artificial grid motion due to mesh irregularity. Such motion was visible in Saltzman-like problems, [36,19], on
meshes with high aspect ratio zones. A related observation about mode transfer was made in [31] and acknowledged in
[3]. There is also a brief discussion on using the symmetric form of the artificial viscosity in [16].

Our opinion is that the artificial viscosity must deal with only shocks and be zero for shear flows and artificial mesh dis-
tortions. Thus, shear or vorticity dominated regions of the flow have to be identified locally and the viscosity has to be re-
duced in these regions. This can be done by special modification of the coefficient l, like that proposed in [35,27] where new
limiters were introduced. Note that the construction of new limiters can be much more successful if one allows l to be a
tensor.1 When viscosity is zero in regions with strong vorticity, the potential violation of conservation of the angular momen-
tum is reduced.

For problems with strong vorticity, one cannot run a pure Lagrangian calculation for a very long time and have to switch
eventually to an Arbitrary Lagrangian–Eulerian (ALE) calculation [21]. To the best of our knowledge, conservation of the
angular momentum during remapping stage of ALE methods has not been studied extensively. On the other hand, in the re-
cent paper [29], the authors present some evidence of importance to use a symmetric form of the artificial viscosity to obtain
accurate results. Therefore, the question about usage of symmetric versus non-symmetric form of the tensor artificial viscos-
ity is not that simple and will be addressed in our future papers. Here, we consider only the non-symmetric form of the arti-
ficial stress tensor and discuss in Remark 3.2 extension of the developed discretization framework to the symmetric form of
the artificial stress tensor.

This paper develops further the ideas presented in [14,15]. In [15], the authors considered only the case of a scalar coefficient
l and a computational mesh consisting of convex polygonal cells. In the recent paper [27], the authors derived a high-order
discretization for the tensor viscosity using a finite-element approach. This approach is applicable only to non-degenerate
quadrilateral meshes in two-dimensions and non-degenerate hexahedral meshes in three-dimensions. Again, only a scalar l
was considered in [27]. Note that the scalar l is not a limitation of methods in [15,27]. Still, the numerical results presented
there clearly demonstrate superiority of the tensor artificial viscosity over other known forms of the artificial viscosity.

In a real computation, one can easily encounter meshes produced by an adaptive mesh refinement (AMR), where angles
between edges sharing a vertex can be equal to p, as well as meshes with non-convex cells. The methods proposed in [15,27]
are not designed to work for such meshes. What is even more important, is that the discrete formulas derived in [14,15,27]
have a singularity when the angle between two edges sharing a vertex approaches p, which may lead to computational insta-
bilities. Therefore, our first objective is to develop a robust discretization of the differential operator div(lru) that works on
general polygonal meshes with degenerate and non-convex cells.

One of the important features of the tensor viscosity is its ability to catch direction of the shock propagation. This is
achieved because ru is the true tensor. Directional properties of the tensor artificial viscosity also allows us to introduce
special limiters, which turn viscosity off for adiabatic compression. This may be very important for implosion problems [16].

There are still a few open problems related to definition of coefficient l. One of them is selection of a characteristic length,
especially for highly stretched cells, which controls thickness of the discrete shock. In this respect, a full fourth-order tensor
coefficient l has enormous potential, provided that a discretization can handle such a tensor. Therefore, our second objective
is to develop a discretization of the differential operator div(lru) with the tensor coefficient l.

In first part of this paper, we develop a new mimetic discretization of the operator div(lru) in the Cartesian (x,y)
coordinate system. The coefficient l can be a full fourth-order symmetric positive semi-definite tensor. The new discret-
ization is based on ideas developed over the last decade in the framework of mimetic finite difference (MFD) methods
[25,24,22,33,23,13,5].

In the traditional MFD method, one first discretizes the first-order operators r, div (see, for example, [15,13]) and then
forms a discrete analog of the second-order operator div(lru). In context of constructing a tensor artificial viscosity, we do
not need the discrete first-order operators per se, we only need a discretization of the second-order operator, because it is the
one who provides artificial viscosity forces in the momentum equation.

The main new idea is the direct discretization of the second-order operator div(lru). This is done by specifying an inner
product in a space of tensors only on its proper subspace. This subspace consists of tensors that are gradients of vectors. This
construction can be considered as an extension of ideas presented in [5] for the scalar Laplacian to the case of tensors. It also
makes important contribution to the theory of the discrete vector and tensor calculus which we are developing
[25,24,20,6,7,28,22,33,23,13,32].

In the second part of this paper, we describe how to incorporate the tensor artificial viscosity into the discrete Lagrangian
hydrodynamics. In this part, we use only a scalar coefficient l. Construction of a tensor coefficient l, in the context of
1 This is one of the reasons why we consider discretization of the full tensor l in this paper.
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Lagrangian hydrodynamics, will be the topic of future research. To construct a conservative discretization of Lagrangian
equations, we use the compatible discretization technique from [17].

We start with the two-dimensional Cartesian geometry. In this case, we use directly the artificial viscosity constructed in
the first part of this paper. For the axisymmetric geometry, we use the ‘‘area-weighted” approach (see, for example, [17,2]).
In this approach, forces in the right-hand side of the momentum equation are discretized exactly as in the Cartesian geom-
etry; however, a special procedure is required to approximate density in the left-hand side. We stress once more that the
same discretization of the operator div(lru) is used in both coordinate systems.

One of the desired properties for the discrete equations is preservation of symmetry on special meshes. We develop a
methodology based on a reference element, which allows us to analyze and to prove symmetry on special meshes without
explicit form of the discrete equations. Using this methodology, we prove that our discretization preserves cylindrical sym-
metry in the Cartesian geometry and spherical symmetry in the axisymmetric geometry on equiangular polar meshes, sub-
ject to appropriate initial and boundary conditions.

The new tensor artificial viscosity has been implemented in the code FLAG [9,11,12]. Our test suite includes the Noh
implosion problem [34], the Sedov blast wave problem [26,38,39], and the Saltzman piston problem [36,19]. Noh’s and
Sedov’s problems are tested on several meshes: polar meshes with uniform and non-uniform angular steps; square and rect-
angular meshes; a polar mesh with adaptive mesh refinement; and a general polygonal mesh. Results of numerical tests
demonstrate accuracy and robustness of the new tensor artificial viscosity. They also confirm that the new method preserves
cylindrical and spherical symmetry on polar equiangular meshes and show how symmetry is violated on other meshes.

The paper outline is as follows. In Section 2, we set the stage by describing how continuous analog of the tensor artificial
viscosity enters equations of Lagrangian gasdynamics. Semi-discrete equations in the Cartesian geometry are described in
Section 3. It includes a brief description of the compatible staggered discretization. Main part of this section is devoted to
derivation of the new tensor artificial viscosity. In Section 4, we describe briefly the area-weighted discretization for the axi-
symmetric geometry. Analysis of symmetry preservation is performed in Section 5. Numerical investigation of approxima-
tion properties of the mimetic discretization of operator div(lru) is done in Section 6. Finally, results of numerical
experiments are presented in Section 7.

2. Continuous equations of Lagrangian gasdynamics

Let us consider a system of hydrodynamics equations in Lagrangian coordinates describing motion of a compressible gas
[41]. The first equation comes from the conservation law for mass:
1
q

Dq
Dt
¼ �divu;
where q is the gas density, u is the gas velocity, and D/Dt denotes the material derivative. The second equation comes from
the conservation law for momentum:
q
Du
Dt
¼ �rp;
where p is the gas pressure. The third equation comes from the conservation law for the total energy. The equation for the
internal energy density e reads:
q
De
Dt
¼ �p divu:
The system of three equations with four unknowns is closed by an equation of state:
p ¼ pðe;qÞ:

The ideal gas law is used in our numerical experiments.

2.1. Artificial viscosity

For shock calculations, an artificial numerical viscosity has to be added to the discrete momentum equation. Following
[15,27], we define the artificial viscosity as an approximation of the elliptic operator:
~fvis ¼ divðlruÞ;
where we allow l be a fourth-order tensor. The continuous form of the modified momentum Eq. (3.2) becomes
q
Du
Dt
¼ �rpþ divðlruÞ;
or
q
Du
Dt
¼ ~fprs þ ~fvis; ~fprs ¼ �rp; ~fvis ¼ divðlruÞ;
where ~fprs and ~fvis are forces due to pressure and artificial viscosity, respectively.
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The continuous form of the equation for the internal energy, which includes work done by the artificial viscosity, is
q
De
Dt
¼ �p divuþ lru : ru:
3. Semi-discrete equations of Lagrangian gasdynamics

Let us consider a polygonal partition Xh of a computational domain X into non-overlapping zones z. We allow Xh to con-
tain non-convex and degenerate (a vertex lies on a line connecting two other vertexes) zones. However, we assume that this
partition is conformal in the following sense. Intersection of two different zones is either a few mesh points, or a few mesh
edges (two adjacent zones may share more than one edge), or empty.

Let Az be the area of zone z and Le be the length of edge e. We denote by nz the exterior normal vector to boundary @z and
by ne

z its restriction to edge e. We shall frequently write ne instead of ne
z whenever it will not be ambiguous. Let xz be the

center of zone z and xe be the center of edge e. We assume that each zone is star-shaped with respect to its center, i.e. each
ray emanating from xz intersects the boundary of z at exactly one point.

3.1. The x–y coordinate system

We consider a staggered discretization. The discrete velocity unknowns up are defined at mesh nodes p. Let U the be vec-
tor of degrees of freedom up. The size of this vector is twice the number of mesh points.

For a given vector U, we may reconstruct a continuous discrete function uh, uh ¼ LðUÞ. We assume that uh is linear on
every edge e and uh(p) = up at every mesh point p. We do not specify the value of uh inside zone z, because, as we will
see later, it is not needed in our method. The reconstruction operator L plays a theoretical role. In general, it is not unique.

Furthermore, we assume that the reconstruction operator L is exact for piecewise linear functions in the following sense.
Let uL be a velocity function linear in each zone z and UL be the vector of degrees of freedom. Then, we require that
uL ¼ LjzðULÞ, where Ljz is the restriction of L to zone z.

The discrete pressure unknowns pz, density unknowns qz and internal energy unknowns ez are defined at centers of zones
z. These unknowns define in a natural way piecewise constant mesh functions ph, qh and eh.

For Lagrangian methods, the mass mz in element z is constant in time and the discrete equation for conservation of mass is
qz ¼
mz

Az
: ð3:1Þ
We use a compatible (mimetic) discretization of the momentum and internal energy equations [17]. Let mp be the constant
mass associated with point p and fp

z be a subzonal force acting from zone z to point p. Then, the semi-discrete equations are:
mp
Dup

Dt
¼
X
z3p

fp
z ; mz

Dez

Dt
¼ �

X
p2z

fp
z � up: ð3:2Þ
We use the Euler-trapezoidal predictor–corrector method for time integration [17]. To calculate the point masses, we con-
sider a dual mesh Dh obtained by connecting centers of zones z with mid-points of edges e. This introduces another polyg-
onal partition of the computational domain X into dual zones Ep associated with points p. Then the point mass mp is defined
by integrating piecewise constant function qh over the dual zone Ep.

Contribution to the subzonal force fp
z from the pressure is defined via the Green formula for the dual zone Ep:
�
Z

Ep

rpdA ¼ �
I
@Ep

pnEp dL ¼ �
X
z3p

Z
@Ep\z

pnEp dL:
Replacing p with the discrete function ph, we get contribution of the pressure to the point force:
ðfprsÞp ¼
X
z3p

ðfprsÞpz ; ðfprsÞpz ¼ �
Z
@Ep\z

phnEp dL ¼
Z
@z\Ep

phnz dL: ð3:3Þ
In the last step we used the fact that boundaries @Ep \ z and @z \ Ep make a closed contour and ph is constant on z \ Ep. Con-
tribution ðfvisÞpz of the artificial viscosity to the subzonal point force is defined in the next subsection. After that, the scheme is
completed by setting
fp
z ¼ ðf

prsÞpz þ ðf
visÞpz : ð3:4Þ
3.2. Artificial viscous subzonal force

The major focus of this article is on the discretization of the artificial viscous term on arbitrary polygonal meshes. As it was
mentioned in the previous section, the artificial viscosity contributes to the subzonal point force fp

z (see (3.4)). Derivation of
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the subzonal point force ðfvisÞpz requires to discretize the vector elliptic operator div(lr). The presented method is based on
the principles of mimetic discretization for the scalar Laplacian [5] but differs from the one in [15]. The novel method can be
applied to a larger family of meshes, including meshes with non-convex and degenerate zones, and full tensor coefficient l.

In the mimetic methodology, the combined operator divl and the gradient operator r are replaced by compatible dis-
crete mimetic operators DIVl and GRAD, respectively. A force due to artificial viscosity is calculated as follows:
Fvis ¼ MQDIVlGRADU; ð3:5Þ
where U is the global vector of velocity degrees of freedom, and the mass matrix MQ is introduced below. The matrix MQ

reflects the fact that the forces are applied to nodal masses (compare with the differential form of the momentum equation).
In the sequel, we will show how the vector Fvis can be assembled from subzonal point forces ðfvisÞpz without explicit calcu-
lation of the mimetic operators. However, the basis of the mimetic discretization has to be introduced first. To simplify expo-
sition, we assume the following boundary conditions on oX:
u � n ¼ 0 and ðlru � sÞ � n ¼ 0; ð3:6Þ
where n and s are the unit normal and tangential vectors, respectively.
Let Qh be the space of velocity vectors V. The dimension of this space is twice the number of mesh nodes. The vector

V 2 Qh is composed of two-dimensional vectors vp (denoted also as (V)p) where p is a mesh point. The boundary condition
(3.6) implies that (V)p � n = 0 for every boundary point p. The space Qh is equipped with the inner product:
½U;V�Q � ðMQ UÞT V; 8U;V 2 Q h; ð3:7Þ
where MQ is a diagonal positive definite matrix. Its diagonal entry corresponding to point p is equal to VEp , the area of the
dual zone Ep.

The second-order tensor T is represented by its tangential components Te ¼ T � se on mesh edges, where se is the unit
tangential vector to edge e. Let Xh be the space of such discrete tensors. The dimension of this space is twice the number
of mesh edges. For T 2 Xh, we write (T)e for the tangential component on mesh edge e, which is a two-dimensional vector.

The vector space Xh is equipped with the inner product:
½T;G�X � ðMXTÞT G; 8T;G 2 Xh; ð3:8Þ
where MX is a symmetric positive definite matrix. Construction of this matrix is a non-trivial task since only tangential com-
ponents of tensors are known.

Let edge e have end points p and p0, and the tangential vector se point from p to p0. The mimetic gradient on edge e is an
approximation of the directional derivative of the velocity:
ru � se �
up0 � up

Le
� ðGRADUÞe:
The mimetic divergence operator DIVl is defined implicitly via the discrete Green formula:
½U;DIVlT�Q ¼ �½GRADU;T�X ; 8U 2 Q h; T 2 Xh; ð3:9Þ
which mimics the continuous formula:
Z
X

u � divðlTÞdA ¼ �
Z

X
ru : ðlTÞdA:
Note that the boundary conditions (3.6) were chosen to nullify the boundary integral in the Green formula. The continuous
Green formula also implies that the inner product in the space of tensors is the weighted inner product and the weight is
given by tensor l. Inserting (3.7) and (3.8) into (3.9), we get that
DIVl ¼ �M�1
Q GRAD

T MX :
Since MQ is the diagonal matrix, the divergence operator has a local stencil.
The inner product matrix MX is the heart of the mimetic technology. Because we need to compute only DIVlGRAD, the

full matrix MX is not needed. Using (3.5) and the discrete integration by parts formula (3.9), we get
ðFvisÞT V ¼ ½DIVlGRADU;V�Q ¼ �½GRADU;GRADV�X

for any vector V. This argument shows that we need to define the inner product matrix MX only on the space of discrete gra-
dients, which is the proper subspace of Xh. In other words, we propose to calculate directly a stiffness matrix fMX such that
½GRADU;GRADV�X � ðfMXUÞT V; 8U;V 2 Q h; ð3:10Þ
where
fMX ¼ GRADT MXGRAD: ð3:11Þ
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Then,
Fvis ¼ �fMXU:
The conventional mimetic approach requires calculation of all terms in (3.11). However, since only the action of matrix
MX on subspace of discrete gradients is required for this, a faster calculation offMX is possible using the ideas described in [5].

For vector V 2 Qh, we denote its restriction to zone z by Vz. The latter is composed of two-dimensional vectors vp (denoted
also as ðVÞpz ), where p 2 z. Formula (3.10) represents the following integral:
ðfMXUÞT V ¼
Z

X
lruh : rvh dA;
where uh ¼ LðUÞ and vh ¼ LðVÞ. The last equation implies that for every matrix fMX , which we derive later, there exists the
reconstruction operator L. This is just a simplification that allows us to use the finite-element framework for analysis. The
explicit form of L is not required.

The additivity of integration implies that the calculation can be done zone-by-zone:
ðfMXUÞT V ¼
X
z2Xh

ðfMzUzÞT Vz; ðfMzUzÞT Vz ¼
Z

z
lzruh : rvh dA; ð3:12Þ
where lz is a constant tensor approximating l in zone z. This reduces calculation of the global matrix fMX to calculation of
smaller zonal matrices fMz. Still, the direct calculation of the integral in the right-hand side is not possible because value of
the mesh functions inside zone z depends on the reconstruction operators L which is not available. We calculate the zonal
matrix fMz using general properties of the reconstruction operator rather than its precise form.

Let us formulate a few matrix equations for fMz that mimics the Gauss–Green formulas. Consider a linear vector-function
uL and the corresponding vector of degrees of freedom UL. By the property of the reconstruction operator, uL ¼ LðULÞ. Using
the integration by parts, the reconstruction property stating that vh is linear of mesh edges, and the trapezoidal quadrature
rule for edge integrals, we get
Z

z
lzruL : rvh dA ¼ �

Z
z

divðlzruLÞ � vh dAþ
Z
@z
ðlzruL � nzÞ � vh dL

¼
Z
@z
ðlzruL � nzÞ � vh dL ¼

X
e2@z

lzruL � ne
z

� �
� vp þ vp0
� � Le

2
; ð3:13Þ
where p and p0 denote end points of edge e and are different in every term. The last sum can be rewritten as a dot product of a
computable vector RL,z and vector Vz. Components of vector RL,z depend of course on function uL and tensor lz. Let e and e0 be
two edges of z meeting at point p. Then,
ðRL;zÞp ¼ lzruL � ne
z

� � Le

2
þ lzruL � ne0

z

� � Le0

2
¼ lzruL � ne

z
Le

2
þ ne0

z
Le0

2

� �
: ð3:14Þ
Let UL,z be the restriction of UL to zone z. Combining the last three formulas, we get
ðfMzUL;zÞT Vz ¼ RT
L;zVz; ð3:15Þ
where Vz is an arbitrary vector. Now, we formulate the following problem: Find a symmetric matrix fMz such that formula
(3.15) is the identity for all UL,z corresponding to linear functions uL. Due to linearity of algebraic operations, it is sufficient to
consider only six linearly independent linear vector functions uL that we denote by bi (they form a basis in the space of linear
vector functions):
b1 ¼
x

0

� �
; b2 ¼

y

0

� �
; b3 ¼

0
x

� �
; b4 ¼

0
y

� �
; b5 ¼

1
0

� �
; b6 ¼

0
1

� �
:

Let Ri,z and Bi,z be the vectors from the right-hand and left-hand sides of (3.15), corresponding to vectors RL,z and UL,z, respec-
tively. Note that R5,z and R6,z are zero vectors, because the gradients of constant vectors b5 and b6 are zero tensors. Thus, we
get four matrix equations:
fMzBi;z ¼ Ri;z; i ¼ 1;2;3;4: ð3:16Þ
To solve (3.16), we first calculate dot products
aij ¼ RT
i;zBj;z ¼

Z
z
lzrbi : rbj dA ¼ ðlzrbi : rbjÞAz:
Let a ¼ faijg4
i;j¼1 be the square matrix of size four. This is the positive definite matrix for any positive definite tensor lz. Using

definition of a�1, we may verify that the matrix
fMð0Þ
z ¼

X4

i;j¼1

ða�1ÞijRi;zRT
j;z
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satisfies Eq. (3.16). This is a semi-positive definite matrix. If we use these matrices to assemble the global matrixfMX , we get a
semi-positive definite matrix with a huge null space. This matrix does not approximate the elliptic operator. Moreover, no
artificial viscosity is added to the system when the velocity field lies in the null space. Thus, the zonal matrices must be cor-
rected such that the assembled matrix becomes an approximation of the elliptic operator. More precisely, the null space of
matrix fMz must contain only constant vectors.

Let us define a subspace Uz of vectors orthogonal to six vectors Bi,z. To correct the zonal matrix fMð0Þ
z , we add the orthog-

onal projector Pz onto Uz:
fMz ¼fMð0Þ
z þ

1
3

traceðlÞPz; ð3:17Þ
where
P2
z ¼ Pz ¼ PT

z ; PzBi;z ¼ 0; i ¼ 1; . . . ;6: ð3:18Þ
Recall that the trace of the forth-order identity tensor is 3. By construction, the resulting matrix satisfies Eq. (3.16). Calcu-
lation of the orthogonal projector is a well studied linear algebra problem. Let us form a matrix Bz with six columns Bi,z. Then,
the orthogonal projector is given by
Pz ¼ Iz � BzðBT
z BzÞ�1BT

z ; ð3:19Þ
where Iz is the identity matrix of the same size as Pz. This completes the derivation of the local stiffness matrix. The calcu-
lation of vector Fvis reduces now to calculation of local matrix–vector products Fvis

z ¼fMzUz. The two-dimensional vector
Fvis

z

� 	p
is the subzonal viscous point force ðfvisÞpz needed in (3.4).

Remark 3.1. Connection with finite-element methods (3.12) implies that, for a convex quadrilateral zone, the matrix fMz is
spectrally equivalent to the stiffness matrix Sz in [27] and agrees with it on linear velocity fields.
Remark 3.2. The discretization framework is based on the integration by part formula (3.13), where the first argument is a
linear vector function. Discretization of the symmetric form of the artificial viscosity tensor uses the modified integration by
parts formula:
Z

z
lzDðuLÞ : DðvhÞdA ¼

Z
@z
ðlzDðuLÞ � nzÞ � vh dL ¼

X
e2@z

ðlzDðuLÞ � ne
zÞ � ðvp þ vp0 Þ

Le

2
:

The remaining algebraic derivations are not changed. However, the symmetry analysis (see Section 5) does not work for the
projector (3.19). Fortunately, there exist a rich family of symmetric matrices Pz satisfying PzBi,z = 0. This family will be ana-
lyzed in the future.
3.3. A case of scalar viscosity coefficient

The tensor form of the viscosity coefficient l opens doors for building various methods that will be studied in a separate
paper. Here we focus on a simpler model where l is a scalar. In this case, the matrix a is diagonal with equal diagonal entries,
a = lzAzI. Formula (3.17) reduces to
fMz ¼
1

lzAz

X4

i¼1

Ri;zRT
i;z þ lzPz: ð3:20Þ
To study this matrix in more detail, we split it into four square matrices. We collect the first components of two-dimensional
vectors (Ri,z)p into one group and the other components into the second group. To simplify notation, the vectors with reor-
dered components are still denoted by Ri,z. We perform the same reordering of components for vectors Bi,z:
Ri;z ¼
RðxÞi;z

RðyÞi;z

24 35; Bi;z ¼
BðxÞi;z

BðyÞi;z

24 35:

Definition (3.14) implies that
RðyÞ1;z ¼ RðyÞ2;z ¼ RðyÞ5;z ¼ 0 and RðxÞ3;z ¼ RðxÞ4;z ¼ RðxÞ6;z ¼ 0:
Similar identities hold for subvectors BðxÞi;z and BðyÞi;z . Using these identities in (3.20) and (3.19), we conclude that both the ma-
trix fMz and the projector Pz are block-diagonal matrices with two blocks corresponding to two velocity components:
fMz ¼
fMðxÞ

z 0

0 fMðyÞ
z

" #
; Pz ¼

PðxÞz 0

0 PðyÞz

" #
; ð3:21Þ
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where matrices fMðxÞ
z and fMðyÞ

z can be written in the form similar to (3.20). For instance,
fMðxÞ
z ¼

1
lzAz

X2

i¼1

RðxÞi;z RðxÞi;z

� 	T
þ lzPðxÞz ; ð3:22Þ
where PðxÞz is the orthogonal projector such that
ðPðxÞz Þ
2 ¼ PðxÞz ; PðxÞz BðxÞi;z ¼ 0; i ¼ 1;2;5: ð3:23Þ
Let us form a matrix BðxÞz with three columns BðxÞi;z , i = 1, 2, 5. Then, the orthogonal projector is given by (compare with the
formula for Pz):
PðxÞz ¼ IðxÞz � BðxÞz ðBðxÞz Þ
T BðxÞz

� 	�1
BðxÞz

� 	T
:

Observe that additional relationships hold by construction:
RðxÞ1;z ¼ RðyÞ3;z; RðxÞ2;z ¼ RðyÞ4;z and RðxÞ5;z ¼ RðyÞ6;z:
Similar relationships hold for subvectors BðxÞi;z and BðyÞi;z . This implies that both blocks in (3.21) are identical. The global matrixfMX is assembled from zonal matrices fMz; therefore, it remains block-diagonal with two equal blocks that are approxima-
tions of the scalar elliptic operator �div(lr).

3.4. Viscosity coefficient

In this paper, we use expression for the viscosity coefficient described in [42]:
lz ¼ wzqzLz cQ
cþ 1

4
jDuj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

Q

cþ 1
4

� �2

jDuj2 þ c2
L s2

z

s0@ 1A;

where sz is the zonal sound speed, cL and cQ are positive non-dimensional constants, Lz is the characteristic length, Du is the
measure of compressibility (a scalar, for instance, the velocity jump across the shock), and wz is a binary switch.

The binary switch ensures that the heating due to artificial viscosity occurs only for zones under compression. In numer-
ical experiments, we set wz = 1 when Du > 0 and wz = 0 otherwise. The measure of compression is defined as follows:
Du ¼ Lz

Az

Z
@z

uh � nz dL:
In the numerical experiments, we set cL = cQ = 1. We use two simple estimates for the characteristic length Lz. The first esti-
mate uses Lz ¼ La

z , where La
z ¼

ffiffiffiffiffi
Az
p

, and is appropriate for meshes with mild variation in areas of neighboring zones. The sec-
ond estimate defines Lz ¼ Lu

z , where Lu
z is the zone size in the direction of average momentum. To reduce variations of Lu

z on
unstructured meshes, we smooth the calculated characteristic length using 2–3 Jacobi iterations:
Lu;kþ1
z ¼ 1

2
Lu;k

z þ
1

2Kz

X
z0

Lu;k
z0 ; k P 0;
where Kz is the number of closest neighbors z0 of zone z. Development of robust models for the viscosity coefficient on
unstructured meshes is the topic of active research but beyond the scope of this article.

4. The r–z coordinate system

In the r–z coordinate system, a continuous non-conservative form of the momentum equation divided by r looks exactly
as the momentum equation in the x–y coordinate system [2]. Essentially all discrete symmetry preserving methods in r � z
exploit this fact and use the Cartesian form of the momentum equation:
hqhAip
Dup

Dt
¼
X
z3p

fp
z ; ~mz

Dez

Dt
¼ �

X
p2z

rpfp
z � up; ð4:1Þ
where ~mz is the true zonal mass and hqhAip is a specially defined ’Cartesian’ mass of point p. Let Vz be the volume of zone z
and mp

z be a subzonal mass associated with point p of zone z. The subzonal mass is independent of time. The detailed analysis
presented in [2] gives
~mz ¼
X
p2z

~mp
z ; ~mp ¼

X
z3p

~mp
z ; ~mp

z ¼ rpqp
z Ap

z ;
and
hqhAip ¼
X
z3p

qp
z Ap

z :
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Here Ap
z are nothing else but positive quadrature weights in the formula for volume,
Fig. 1.
zone Ep
Vz ¼
Z

z
r dr dz ¼

X
p2z

rpAp
z ;
and qp
z is the subzonal density that is calculated from the formula for the subzonal mass ~mz

p when rp – 0. For points lying on
the z-axis, the subzonal densities have to be defined from other principles. One of the principles used in Section 5 is the sym-
metry preservation on ’polar’ meshes. The authors of [2] suggest to take values for such qp

z from the closest p0 2 z with rp0 – 0.
On a general polygonal mesh, where two neighboring points may satisfy this criterion, the point with the smallest rp0 is cho-
sen. Note that the quadrature weights Ap

z are not unique but must comply with the symmetry preservation principle.
5. Symmetry analysis

In this section, we analyze how the staggered discretization preserves the cylindrical symmetry in the x–y coordinate sys-
tem and spherical symmetry in the r–z coordinate system on meshes obtained by connecting points of true polar meshes by
straight lines. One of the resulting quadrilateral elements is shown in Fig. 1. We assume that the polar mesh is uniform in the
angular direction, Dh = constant.

Here we focus only on symmetry of operators and forces assuming implicitly that the boundary and initial conditions, and
the viscosity model for lz respect the symmetry.

5.1. Cylindrical symmetry of pressure forces

Cylindrical symmetry requires the pressure and the internal energy be functions of only radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and the

velocity vector be oriented along the radius vector:
p ¼ pðrÞ; e ¼ eðrÞ; u ¼ uðrÞðsin h; cos hÞT ; ð5:1Þ
where h is the polar angle. We assume that h = 0 corresponds to the direction of the y-axis. For discrete functions, relaxed
symmetry requirements are more appropriate:
ph ¼ phðr;DhÞ; eh ¼ ehðr;DhÞ; uh ¼ uhðr;DhÞðsin h; cos hÞT : ð5:2Þ
We shall also highlight special cases when the discrete functions do not depend on Dh.
Let us consider the quadrilateral zone z shown in Fig. 1. Let (rp, hp) be the polar coordinates of point p. As shown in this

figure, p1 = p.
The analysis of symmetry is focused on a ’polar’ layer with the interior radius rp and the exterior radius rp + Dr. Note that

Dr is considered as a function of rp. The pressure, density, internal energy, and the viscosity coefficient l are assumed to be
constant in this layer. The velocity field is assumed to have constant amplitude on the interior and exterior boundaries. Our
goal is to show that the subzonal forces in (3.2) preserve this symmetry. We shall use superscript ’ref’ for vectors and matri-
ces that depend only on rp and Dh.

Let us introduce the matrix Rh,
Rh ¼
cos h sin h

� sin h cos h

� �
;

which describes clockwise rotation in the x–y plane on angle h. It will be convenient to use two superscripts to represent
edge length Lij

z and the corresponding normal vector nij
z . Then,
Left picture: A quadrilateral zone z. Right picture: Solid lines show four quadrilateral zones sharing a common point p. Dashed lines mark the dual
.
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n24
z ¼ RhpþDh=2

0
1

� �
; n12

z ¼ RhpþDh=2
� cosðDh=2Þ
� sinðDh=2Þ

� �
; n34

z ¼ RhpþDh=2
cosðDh=2Þ
� sinðDh=2Þ

� �
;

and n13
z ¼ �n24

z . We also need the following formulas:
Az ¼ ðrp þ Dr=2ÞDr sin Dh; L13
z ¼ 2rp sinðDh=2Þ; L12

z ¼ Dr: ð5:3Þ
Definition of the subzonal pressure point force (3.3) gives
ðfprsÞpz ¼
pz

2
n13

z L13
z þ n12

z L12
z

� 	
:

Four subzonal forces will contribute to the force acting at point p (see the right picture in Fig. 1). This summation of sub-
zonal forces can be done in pairs that belong to the same ’polar’ layer. Let us consider the pair z and z0 shown on the right
picture in Fig. 1. By assumption pz = pz0. From geometry, we conclude that L13

z ¼ L13
z0 and n12

z ¼ �n34
z0 . Thus,
ðfprsÞpz þ ðf
prsÞpz0 ¼

pz

2
L13

z n13
z þ n13

z0
� �

¼ �pzrp sinðDhÞRhp

0
1

� �
:

The right-hand is the clockwise rotation of a reference force vector by angle hp. A similar argument can be applied to the
other pair of zones around point p. Summation of these forces will give the pressure point force:
ðfprsÞp ¼ Rhp ðf
prs
ref Þ

p
; ðfprs

ref Þ
p ¼ �ðpz � pz00 Þrp sinðDhÞ

0
1

� �
: ð5:4Þ
Remark 5.1. Comparing (5.4) with the formula (5.3) for area Az, we observe the same dependence on the polar angle Dh.

Since the point mass mp is proportional to Az, the discrete momentum Eq. (3.2), in absence of artificial viscous forces,
becomes the one-dimensional equation.

Analysis of energy equation requires to write subzonal forces in a form similar to (5.4):
ðfprsÞpz ¼ Rhp ðf
prs
ref Þ

p
z : ð5:5Þ
Direct calculations give
ðfprs
ref Þ

p1
z ¼

pz

2
�2rp1

sin2ðDh=2Þ � Dr
�rp1

sinðDhÞ

" #
; ðfprs

ref Þ
p2
z ¼

pz

2
2rp2

sin2ðDh=2Þ � Dr
rp2

sinðDhÞ

" #
ð5:6Þ
for points p1 and p2, and
ðfprs
ref Þ

p3
z ¼

pz

2
2rp3

sin2ðDh=2Þ þ Dr
�rp3

sinðDhÞ

" #
; ðfprs

ref Þ
p4
z ¼

pz

2
�2rp4

sin2ðDh=2Þ þ Dr
rp4

sinðDhÞ

" #
ð5:7Þ
for points p3 and p4. Recall that Dr is the function of rp1
.

5.2. Cylindrical symmetry of artificial viscous forces

Let us show that the artificial viscous force also preserves cylindrical symmetry on the ‘polar’ mesh. The analysis is fo-
cused again on one ‘polar’ layer. Recall that the vector of subzonal forces is Fvis

z ¼ �fMzUz and subzonal point force is
ðFvis

z Þ
p. We omit superscript ’vis’ for the rest of this subsection.

The block-diagonal structure of fMz allows us to analyze each velocity component independently; however, analysis be-
comes shorter when applied simultaneously to subvectors UðxÞz and UðyÞz . For the quadrilateral element z shown on the left
picture in Fig. 1, these subvectors have four components.

In a finite-element method, the integral in (3.12) is invariant with respect to rotation and gives the same stiffness matrix
for each zone in the ‘polar’ layer. This simplifies the analysis of symmetry. In the MFD method, construction of the stiffness
matrix is pure algebraic. To follow the finite-element path, additional non-trivial properties of the lifting operator must be
proved including also its existence. Therefore, we employ another technique for the symmetry analysis.

Using the local ordering of vertexes shown in Fig. 1, we define two subspaces of R4:
Sþ ¼ fV ¼ ða; b; a; bÞT ; a; b 2 R1g; S� ¼ fV ¼ ða; b;�a;�bÞT ; a; b 2 R1g:
The following result is proved immediately by observing that spaces Sþ and S� are orthogonal to each other.

Lemma 5.1. For any number of vectors V1, . . .,Vk from space S ¼ Sþ [ S� and the matrix H ¼
Pk

i¼1ViV
T
i , we get the following

inclusions:
HW 2 Sþðresp:;S�Þ when W 2 Sþðresp:;S�Þ:
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Let us show that matrixfMz has the form needed for the above lemma. We start with writing the first term of (3.22) as the
product of two 4 � 2 matrices:
X2

i¼1

RðxÞi;z ðR
ðxÞ
i;z Þ

T ¼ RðxÞ1;z; RðxÞ2;z

h i
RðxÞ1;z; RðxÞ2;z

h iT
;

where [a; b] denotes a matrix with two columns a and b. To simplify notation, we define c = cos(Dh/2) and s = sin(Dh/2).
Using formula (3.14) and formulas for normal vectors, we get
RðxÞ1;z; RðxÞ2;z

h i
¼ lz

2

L12
z n12

z

� �T þ L13
z n13

z

� �T

L24
z n24

z

� �T þ L12
z n12

z

� �T

L13
z n13

z

� �T þ L34
z n34

z

� �T

L34
z n34

z

� �T þ L24
z n24

z

� �T

2666664

3777775 ¼
lz

2

�cL12
z �sL12

z � L13
z

�cL12
z �sL12

z þ L24
z

cL34
z �sL34

z � L13
z

cL34
z �sL34

z þ L24
z

266664
377775RT

hpþDh=2:
Both columns in the last matrix depend only on r, Dr, and Dh. Thus,
RðxÞ1;z; RðxÞ2;z

h i
¼ RðxÞ;ref

1;z ; RðxÞ;ref
2;z

h i
RT

hpþDh=2; RðxÞ;ref
1;z 2 S�; RðxÞ;ref

2;z 2 Sþ:
Since RT
hRh is the identity matrix for any angle h, we conclude that the first term in zonal matrix fMz depends only on the

cylindrical radius rp and Dh.
Straightforward calculations show that the following matrix is the orthogonal projector satisfying properties (3.23):
Pz ¼
1

kNðxÞz k
2 NðxÞz ðN

ðxÞ
z Þ

T ; NðxÞz ¼ ðr þ Dr;�r;�r � Dr; rÞT 2 S�:
This implies that the second term in the zonal matrix fMz depends only on r and Dh. Therefore, we can add superscript ’ref’ to
it, fMz ¼fMref

z . Moreover, the matrix fMref
z has the form required for applying Lemma 5.1.

Assumption of the cylindrical symmetry (5.1) for the velocity vector gives
up ¼ Rhp ðuref Þp; ðuref Þp ¼
0

uðrpÞ

� �
: ð5:8Þ
Applying this formula to four vertices of zone z, we get
UðxÞz ¼

uðrpÞ sin hp

uðrp þ DrÞ sin hp

uðrpÞ sinðhp þ DhÞ
uðrp þ DrÞ sinðhp þ DhÞ

26664
37775; UðyÞz ¼

uðrpÞ cos hp

uðrp þ DrÞ cos hp

uðrpÞ cosðhp þ DhÞ
uðrp þ DrÞ cosðhp þ DhÞ

26664
37775:
The argument is not changed if we consider assumptions (5.2). Selecting the part independent of h, we get
UðxÞz ; UðyÞz

h i
¼ UðxÞ;ref

z ; UðyÞ;ref
z

h i
RT

hpþDh=2; UðxÞ;ref
z 2 S�; UðyÞ;ref

z 2 Sþ:
Summarizing, for every cylindrical layer, the matrix [F(x); F(y)] is the product of a reference stiffness matrix, the reference
4 � 2 matrix and the rotation matrix. Lemma 5.1 gives that
FðxÞz ; FðyÞz

h i
¼ FðxÞ;ref

z ; FðyÞ;ref
z

h i
RT

hpþDh=2; FðxÞ;ref
z 2 S�; FðyÞ;ref

z 2 Sþ: ð5:9Þ
Every row of the reference 4 � 2 matrix is the subzonal viscous point force. Definition of spaces Sþ and S� implies that the
reference subzonal force at point p1 (see the left picture in Fig. 2) is the mirror image of the references subzonal force at point
p3 with respect to the y-axis. The same is true for the other pair of points.

Formula (5.9) states that the actual force is obtained by rotation of the reference force by angle hp + Dh/2. The right picture
in Fig. 2 is the geometric proof of the fact that the sum of two subzonal viscous forces at point p acts along the diagonal of the
parallelogram attached to point p. Since these forces are equal and mirror images of one another with respect to line passing
through the origin and point p, this direction is radial.

Repeating the above argument for the other pair of zones around point p, we conclude, that the total viscous point force
can be written as follows:
ðfvisÞp ¼ Rhp fv is
ref

� 	p
; fvis

ref

� 	p
¼

0

f vis
ref

� 	p

" #
; ð5:10Þ
where (rp, hp) are the polar coordinates of point p, and the reference force f vis
ref

� 	p
depends only on rp and Dh.



Fig. 2. Left picture: Subzonal forces for a reference zone. Right picture: Summation of subzonal forces at point p.
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Remark 5.2. Detailed formula for ðf v is
ref Þ

p shows non-trivial dependence on Dh and the one-dimensional momentum
equations are obtained only in the limit Dh ? 0. Allowing lz to be the full tensor could be a possible way for eliminating
dependence on Dh.

Analysis of energy equation requires to write subzonal forces in a form similar to (5.10):
ðfv isÞpz ¼ Rhp fvis
ref

� 	p

z
: ð5:11Þ
The reference subzonal forces fvis
ref

� 	p

z
follow from rotation of reference forces in (5.9) by angle ±Dh/2. For instance, taking the

first and the third rows in the reference matrix to form two-dimensional vectors ðFref
z Þ

p1 and Fref
z

� 	p3
, respectively, and noting

that RhRh0 ¼ Rhþh0 , we get
fvis
ref

� 	p1

z
¼ R�Dh=2 Fref

z

� 	p1
; fvis

ref

� 	p3

z
¼ RDh=2 Fref

z

� 	p3
ð5:12Þ
for points p1 and p3.

5.2.1. Triangles at the origin
At the origin, quadrilateral zones become triangular zones. On a triangular zone, the MFD method reduces to the linear

finite-element method. Indeed, the orthogonal projector PðxÞz should be a 3 � 3 matrix satisfying conditions (3.23). Since vec-
tors BðxÞ1;z;B

ðxÞ
2;z and BðxÞ5;z are linearly independent, this is possible only when the projector is the zero matrix; therefore, the stiff-

ness matrix (3.22) is fully defined by two functions x and y.
The mesh function uh is always linear on a triangle; therefore, the integral representation (3.12) can be used for analysis

of symmetry. This integral is independent with respect to rotation of triangle z. It is easy to verify that on the reference tri-
angle (the dashed triangle Op1p3 on the left picture in Fig. 2), two subzonal point forces (at points other than the origin) will
be mirror images of one another.

5.2.2. Subzonal forces for boundary points
The impermeable boundary condition, u�n = 0, allows us to reflect the mesh and the velocity field about radial boundaries

(h = constant). After that, the boundary point can be treated as an internal point and the above arguments can be applied.
More efficient implementation is based of the observation that the mass of a boundary point is twice less than the mass of

an internal point with the same radius. Thus, the equivalent approach is to split the point force fp into normal to boundary
and tangential components and set the latter to zero.

5.3. Spherical symmetry of subzonal forces

Spherical symmetry requires pressure and internal energy be functions of only radius R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

and the velocity vector
be oriented along the radius vector, i.e. they have again the form (5.1) with R in place of r. For mesh calculations, relaxed
assumptions of the spherical symmetry, similar to (5.2), are more appropriate.

In the r–z coordinate system, analysis of the right-hand side of the momentum Eq. (4.1) proceeds as is Section 5.1. Let
(Rp, hp) be the polar coordinate of point p. We assume that the pressure, density, internal energy, and the viscosity coefficient
l are constant in each ‘polar’ layer. We also assume that the velocity field has constant amplitude on the interior and exterior
boundaries of this layer. The goal is to show that the subzonal forces in (4.1) preserve this symmetry.

A novel step in the analysis is to show that hqhAip in the left-hand side is independent of h. This is true when the
quadrature weights Ap

z are independent of h. To apply arguments from Section 5.2.2, we need to distribute these weights
symmetrically (see Fig. 1):
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Ap1
z ¼ Ap3

z and Ap2
z ¼ Ap4

z :
For the ‘polar’ mesh considered in this section, a solution proposed in [2] gives:
Ap1
z ¼ sinðDhÞDR Rp1

þ 1
3

DR
� �

and Ap2
z ¼ sinðDhÞDR Rp2

þ 2
3

DR
� �

:

Note that this solution is not unique. Comparing with formula (5.3), we observe that angular dependence of hqhAip is in the
same form. This implies that, in absence of artificial viscosity forces, sin(Dh) will cancel out in the momentum equation giv-
ing the one-dimensional discrete equations. Otherwise, we have the spherically symmetric solution that depends on R and
Dh.
5.4. Analysis of energy equation

We begin with analysis of the cylindrical symmetry in the x–y coordinate system. Let us consider again the cells z shown
in Fig. 1 and the second equation in (3.2). Since the force vectors (5.5) and (5.11), and the velocity vectors (5.8) are obtained
by rotation of the reference vectors, we get
mz
Dez

Dt
¼ �

X
p2z

fp
z � up ¼ �

X
p2z

ðfprs
ref Þ

p
z � ðuref Þp þ fvis

ref

� 	p

z
� ðuref Þp

h i
: ð5:13Þ
Since mz is constant in a considered layer, the discrete internal energy preserves the cylindrical symmetry; however, it de-
pends on Dh. In the absence of artificial viscous forces, a stronger result can be shown. According to (5.3), the zonal mass has
factor sin(Dh). Using formulas (5.6), (5.7) and (5.8), we get
X

p2z

fprs
ref

� 	p

z
� ðuref Þp ¼ pz sinðDhÞðrp2

uðrp2
Þ � rp1

uðrp1
ÞÞ:
Thus, the factor sin(Dh) is canceled in both sides of the energy equation giving the one-dimensional equations.
We continue with analysis of the spherical symmetry in the r–z coordinate system. Applying the above argument to the

second equation in (4.1), it can be rewritten as follows:
~mz
Dez

Dt
¼ �

X
p2z

rpfp
z � up ¼ �

X
p2z

rp fprs
ref

� 	p

z
� ðuref Þp þ fvis

ref

� 	p

z
� ðuref Þp

� 	
: ð5:14Þ
Using first formulas (5.6), (5.7) and (5.8) (with Rp in place of rp), and then inserting r-coordinates of points, we obtain
X
p2z

rp fprs
ref

� 	p

z
� ðuref Þp ¼ pz

2
sinðDhÞ uðRp2

ÞRp2
ðrp2
þ rp4

Þ � uðRp1
ÞRp1
ðrp1
þ rp3

Þ
� �

¼ pz sinðDhÞ sinðhp1
þ Dh=2Þ cosðDh=2Þ uðRp2

ÞR2
p2
� uðRp1

ÞR2
p1

h i
:

Definition of the zonal mass in the r–z coordinate system gives
~mz ¼ qzVz ¼ qz R2
p1

DRþ Rp1
ðDRÞ2 þ ðDRÞ3

3

 !
sinðDhÞ cosðDh=2Þ sinðhp1

þ Dh=2Þ:
Comparing the last two formulas, we observe that three factors depending on hp1
and Dh are canceled out giving the one-

dimensional energy equations in absence of artificial viscous forces.
Symmetry analysis for viscous forces is more involved. We break the sum over points into two pieces. Using formulas

(5.12) and the mirror symmetry of reference vectors Fref
z

� 	p1
and Fref

z

� 	p3
with respect to y-axis, we get the following refer-

ences forces:
fvis
ref

� 	p1

z
¼

a

b

� �
; fvis

ref

� 	p3

z
¼
�a

b

� �
;

where a and b are some numbers depending on Rp1 and Dh. Using formula (5.8), we get
X
i¼1;3

rpi
fvis

ref

� 	pi

z
� ðuref Þpi ¼ buðRp1

ÞRp1
ðsin hp1

þ sinðhp3
ÞÞ ¼ 2buðRp1

ÞRp1
sinðhp1

þ Dh=2Þ cosðDh=2Þ:
A similar formula (with different b and Rp2
in place of Rp1

) is obtained for contribution from points p2 and p4. Comparing the
result with formula for the zonal mass, we conclude that the factor depending on hp1

is canceled out giving a spherically sym-
metric method.
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6. Approximation properties of DIVlGRAD operator

We consider three sequences of meshes shown in Fig. 3. The first sequence (see Fig. 3a)) is obtained by applying the
smooth mapping
x :¼ xþ 0:1 sinð2pxÞ sinð2pyÞ
to a square mesh. The second sequence (see Fig. 3b)) starts with a logically square 8 � 8 mesh and is built via its uniform
refinement. The third sequence (see Fig. 3c)) consists of median meshes that are dual to Delaunay meshes build using points
of meshes from the first sequence.

First, we analyze numerically approximation properties of discrete operator DIVlGRAD with l = 1. Let us consider a
smooth velocity field u(x, y) = (cos(p(x + y), cos(p(x � y)))T proposed in [27] and the corresponding discrete vector U. The last
three columns in Table 1 show a relative discrete L2-norm of error between the discrete counterpart of ~fvis ¼ divðruÞ and
DIVlGRADU. On smooth meshes (sequence number one), the convergence rate for this error approaches two. For piecewise
smooth meshes (sequence number two), the convergence rate is one. For polygonal meshes, that were built using a smooth
distribution of points, the convergence rate approaches 0.5.

In Fig. 4, we plot viscous forces at mesh points on different types of meshes. These meshes have about the same number of
zones; however, the polygonal mesh has twice more points which results in a denser graphics.

Now we consider the same velocity field but a variable tensor l:
lðx; yÞ ¼ Rp=6
e�ðxþy�1Þ2=m1 0

0 e�ðx�yÞ2=m2

" #
RT

p=6; m1 ¼ 1; m2 ¼ 0:2:
The discrete viscous forces are shown in Fig. 5 for the meshes corresponding to the refinement level two. The relative
errors are collected in Table 2. We observe the same tendency in error reduction as for the case of constant l.

Let us note that for l = 1 and linear u, the error is zero on an arbitrary mesh by construction. This is no longer true for a
variable l; thus, a non-zero numerical viscosity can be generated for a flow with uniform compression (linear u). This prob-
lem is usually addressed by introducing an additional limiter as part of the coefficient lz, such that it reflects smoothness of
the velocity field and vanishes for linear velocity field. Development of robust limiters for unstructured meshes is a challeng-
ing problem; therefore, no such limiters are used in our simulations. Instead, we try to control smoothness of the viscosity
coefficient.

7. Numerical hydro experiments

The simulations were done using the code described in [9,11,12].

7.1. Computational meshes

Seven meshes are used in numerical experiments. All meshes are located in the first quadrant of the R2 plane. At least two
boundaries are attached to the coordinate axes. Symmetry boundary conditions are used on these boundaries.

PLU: A uniform polar mesh with 50 zones radially and 30 zones angularly. The initial radius of the mesh is 1.
PLN: A polar mesh with the same resolution as PLU but with non-uniform angular mesh steps. The steps between neigh-
boring cells increase monotonically by 1%. The terminal zones in each polar layer have roughly 25% difference in the
angular size.
Fig. 3. Three representative meshes corresponding to the refinement level one.



Table 1
Relative L2-norm of error between the discrete and analytic forces for l = 1.

Refinement level Smooth Random Polygonal

0 8.12e�2 1.20e�1 1.48e�1
1 3.65e�2 7.86e�2 1.26e�1
2 1.16e�2 3.72e�2 9.61e�2
3 3.16e�3 1.65e�2 7.06e�2
4 8.15e�4 7.42e�3 5.03e�2

Rate 1.68 1.03 0.39

Fig. 4. Form left to right: discrete viscous forces for l = 1 on smooth, random and polygonal meshes corresponding to the refinement level two.

Fig. 5. Form left to right: discrete viscous forces for variable l on smooth, random and polygonal meshes corresponding to the refinement level two.

Table 2
Relative L2-norm of error between the discrete and analytic forces for variable l.

Refinement level Smooth Random Polygonal

0 9.21e�2 1.39e�1 1.61e�1
1 3.78e�2 7.85e�2 1.32e�1
2 1.15e�2 3.58e�2 9.34e�2
3 3.08e�3 1.56e�2 6.62e�2
4 7.87e�4 6.89e�3 4.65e�2

Rate 1.75 1.10 0.46
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SQR: A square mesh with 50 � 50 zones. The initial domain is the unit square.
REC: A rectangular mesh with 100 � 50 zones. The initial domain is the unit square.
AMR: A block structured mesh consisting of two uniform polar meshes with 25 zones radially both and 8 and 16 zones
angularly, respectively. The initial radius of the first mesh is 0.5. The second mesh has initially the interior radius 0.5 and
the exterior radius 1.
GEN: A shape-regular polygonal mesh with 775 zones with 4–6 vertices. The initial radius of computational domain is 1.
The initial mesh has shape-regular zones and roughly 30 zones in the radial direction.
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SAL: A logically rectangular mesh in domain [0;0.1] � [0;1] with 100 zones in the longest direction and 10 zones in the
other direction. The coordinates of mesh points are the functions of they logical coordinates i, j:

xi;j ¼ ði� 1ÞDxþ ð11� jÞ sin
pði� 1Þ

100

� �
Dy; yi;j ¼ ðj� 1ÞDy;

where Dx = 1/100 and Dy = 0.1/10.

The visualization was performed using the GMV package [1]. To plot isolines, the GMV interpolates zonal unknowns
to points which results in a mild smoothing of data. In scattered plots, the zonal unknowns are assigned to zone
centers.

The developed tensor viscosity does not control hourglass distortion of zones. In some experiments, it is used in conjunc-
tion with the temporary triangular subzoning (TTS) method [8]. We found out that both methods may be required in exper-
iments using all meshes except PLU. We tested three selections of the characteristic length summarized in Table 3 (see
Section 3.4 for details). Better results were obtained using the choice shown in the table. Two Jacobi iterations are used
to smooth variations of Lu

z only for the Noh problem on mesh GEN in the r–z coordinate system.

7.2. Noh implosion problem

In the Noh problem [34], an ideal gas with c = 5/3, density q = 1.0, and pressure p = 0 is given an initial unit inwards radial
velocity. A circular shock wave is generated at the origin and moves with constant speed 1/3. At time t = 0.6, the shock wave
has radial coordinate 0.2. The density behind shock is 4d, where d = 2 for the x–y coordinate system and d = 3 in the r–z coor-
dinate system.

Figs. 6–8 present results for the Noh problem with cylindrical symmetry. The CFL number is 0.2 in all experiments. The
comparison is organized in pairs. First, two polar meshes are compared in Fig. 6. Part of mesh ahead of the shock has been
removed for visualization clarity. The left panel verifies that the symmetry is preserved on the uniform mesh. The right panel
shows that even small variation of mesh symmetry is sufficient to observe essential solution variation in the angular
direction.

Second, two Cartesian meshes are compared in Fig. 7. The left panel illustrates preservation of mirror symmetry (with
respect to line x = y). The right panel shows more accurate solution with smaller oscillations behind the shock due to better
space resolution in the x-direction. Even small aspect ratio of zones in the REC mesh triggers development of hourglass
modes. Therefore, the TTS method is used to damp these modes.

Finally, results for two advanced meshing strategies (AMR and GEN) are shown in Fig. 8. Lack of smoothness of density
profiles is related to selection of the characteristic length Lz. For the AMR mesh, we observe shock cooling when it hits the
interface between too meshes with sharp change in the size of neighboring zones. However, the solution is almost symmet-
ric, density variation in the angular direction is in the fifth digit. For the GEN mesh, we observe cooling effect near boundaries
x = 0 and y = 0 due to variation of the characteristic length. Note that a rigorous analysis of an optimal viscosity coefficient lz

is beyond the scope of this article.
Figs. 9–11 present results for the Noh problem with spherical symmetry. The CFL number is 0.2 in all experiments. We

observe bigger relative error in density compared to the x–y coordinate system. However, the relative oscillations in scat-
tered plots (symmetry violation) are only slightly worser, except for the simulation on the mesh GEN. We use two Jacoby
iterations to smooth the characteristic length Lu

z and to reduce strong cooling effect around the z-axis. The polygonal mesh
has roughly 40% lesser number of zones in the radial direction compared to the other meshes. Thus, all problems related to
viscosity imperfections must be accentuated on this mesh.

7.3. Sedov blast wave problem

The Sedov explosion problem [26,38,39] generates a strong diverging shock wave. The initial density of the gas with
c = 1.4 is one and the initial velocity is zero. At t = 0, the total energy E0 is all internal and concentrated at the origin. The
analytical solution gives the expanding shock of radius rd with a peak density of 6,
Table 3
The cha

Noh

Sedo

Saltz
rd ¼ ðE0=ðadq0ÞÞ
1=ð2þdÞt2=ð2þdÞ;
racteristic length.

PLU PLN SQR REC AMR GEN SAL

min La
z ; L

u
z

� �
min La

z ; L
u
z

� �
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z La
z min La

z ; L
u
z

� �
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z –

v Lu
z Lu
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z La

z Lu
z Lu

z –

man – – – – – – La
z



Fig. 6. The Noh implosion problem in the x–y coordinate system on PLU (left panel) and PLN (right panel) meshes. Each panel shows the final mesh (top),
density isolines (middle) and solution as the function of distance (bottom, stars). Part of mesh ahead of shock has been removed for visualization clarity. No
TTS method is used.
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Fig. 7. The Noh implosion problem in the x–y coordinate system on SQR (left panel) and REC (right panel) meshes. Each panel shows the final mesh (top),
density isolines (middle) and solution as the function of distance (bottom, stars). Part of mesh ahead of shock has been removed for visualization clarity. The
TTS method is used on REC mesh.
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Fig. 8. The Noh implosion problem in the x–y coordinate system on AMR (left panel) and GEN (right panel) meshes. Each panel shows the final mesh (top),
density isolines (middle) and solution as the function of distance (bottom, stars). Part of mesh ahead of shock has been removed for visualization clarity. The
TTS method is used on both meshes.
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where d is the geometry parameter, d = 2, 3, a2 = 0.983909 and a3 = 0.850937. The total energy E0 is defined such that
rd = 0.9 at time t = 1. In numerical experiments, a few zones near the origin are given the constant specific internal
energy. We use only one zone for meshes SQR and GEN. We use two zones for mesh REC that form the square region
near the origin.



Fig. 9. The Noh implosion problem in the r–z coordinate system on PLU (left panel) and PLN (right panel) meshes. Each panel shows the final mesh (top),
density isolines (middle) and solution as the function of distance (bottom, stars). Part of mesh ahead of shock has been removed for visualization clarity. The
TTS method is used on PLN mesh.
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Figs. 12–14 present results for the Sedov problem with cylindrical symmetry. The CFL number is 0.2 in all experiments.
The comparison is organized in pairs. First, two polar meshes are compared in Fig. 12. The left panel verifies that the
symmetry is preserved on the uniform mesh. The right panel shows that with help of the TTS method, we get moderate mesh
distortion from the radial structure. Without that method, the hourglass distortion is developed behind the shock and results
in mesh tangling around t = 0.7.



Fig. 10. The Noh implosion problem in the r–z coordinate system on SQR (left panel) and REC (right panel) meshes. Each panel shows the final mesh (top),
density isolines (middle) and solution as the function of distance (bottom, stars). Part of mesh ahead of shock has been removed for visualization clarity. The
TTS method is used on the REC mesh.
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Second, two Cartesian meshes are compared in Fig. 13. The left panel illustrates preservation of mirror symmetry with
respect to line x = y. The right panel shows more accurate solution due to better space resolution in the x-direction.



Fig. 11. The Noh implosion problem in the r–z coordinate system on AMR (left panel) and GEN (right panel) meshes. Each panel shows the final mesh (top),
density isolines (middle) and solution as the function of distance (bottom, stars). Part of mesh ahead of shock has been removed for visualization clarity. The
TTS method is used in both experiments.
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Finally, results for two advanced meshing strategies are shown in Fig. 14. Minor variations of density profiles (compare
with the Noh problem) are observed in the region of AMR mesh where the angular resolution is doubled. The polygonal mesh
has the smallest number of zones and still gives accurate solution.



Fig. 12. The Sedov explosion problem in the x–y coordinate system on PLU (left panel) and PLN (right panel) meshes. Each panel shows the final mesh (top),
density isolines (middle) and solution as the function of distance (bottom, stars). The TTS method is used on mesh PLN.

K. Lipnikov, M. Shashkov / Journal of Computational Physics 229 (2010) 7911–7941 7933
Figs. 15–17 present results for the Sedov problem with spherical symmetry. The CFL number is 0.2 in all experiments. On
average, the results are only slightly worser than that in the x–y coordinate system.



Fig. 13. The Sedov explosion problem in the x–y coordinate system on SQR (left panel) and REC (right panel) meshes. Each panel shows the final mesh (top),
density isolines (middle) and solution as the function of distance (bottom, stars). The TTS method is used in both simulations.
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Fig. 14. The Sedov explosion problem in the x–y coordinate system on AMR (left panel) and GEN (right panel) meshes. Each panel shows the final mesh
(top), density isolines (middle) and solution as the function of distance (bottom, stars). The TTS method is used on mesh GEN.
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Fig. 15. The Sedov explosion problem in the r–z coordinate system on PLU (left panel) and PLN (right panel) meshes. Each panel shows the final mesh (top),
density isolines (middle) and solution as the function of distance (bottom, stars). The TTS method is used on mesh PLN.
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7.4. Saltzman piston problem

In the Saltzman problem, a one-dimensional shock wave propagates through a two-dimensional mesh [36,19]. This tests
the ability of the method to model shock waves that are oblique to the mesh. As artificial viscosity is dominant in the shock
wave propagation, the Saltzman piston problem is often used for testing new viscosity methods.



Fig. 16. The Sedov explosion problem in the r–z coordinate system on SQR (left panel) and REC (right panel) meshes. Each panel shows the final mesh (top),
density isolines (middle) and solution as the function of distance (bottom, stars). The TTS method is used in both simulations.
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A box is initially filled with the cold ideal gas (c = 5/3) at density 1. A piston moves into the box with a constant speed 1.0
and generates a shock wave that reflects from the opposite fixed end of the box at time t = 0.8 and hits the piston at time
t = 0.9. The simulation time is 0.925 when the shock reflected from the piston has not yet reached the fixed end. The final
density behind the shock is 20 and the density ahead of the shock is 10 in both coordinate systems.



Fig. 17. The Sedov explosion problem in the r–z coordinate system on AMR (left panel) and GEN (right panel) meshes. Each panel shows the final mesh
(top), density isolines (middle) and solution as the function of distance (bottom, stars). The TTS method is used in both simulations.
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Fig. 18 compares results of simulations in the x–y and r–z coordinate systems. We observe more accurate results in the r–z
coordinate system. The final mesh lines are more straight in this experiment. A common wall heating effect is observed on
the top wall of the box where the symmetry boundary condition is applied.



Fig. 18. The Saltzman piston problem in the x–y (left panel) and r–z (right panel) coordinate systems on the mesh SAL. The z-axis is horizontal. Each panel
shows the final mesh (top), density isolines (middle) and solution as the function of distance (bottom, stars). The TTS method is used in both experiments.
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8. Conclusion

We constructed a new mimetic tensor artificial viscosity on general polygonal meshes. The tensor viscosity is designed as
discretization of the differential operator div(lru), where l is the full fourth-order tensor coefficient. We described how the
new artificial viscosity can be incorporated into the staggered discretization of Lagrangian hydrodynamics in both the Carte-
sian and axisymmetric geometries. We proved that the new tensor viscosity preserves symmetry on special meshes. We
demonstrated performance of the new viscosity on a set of test problems.

In future papers, we are planning to construct a tensor coefficient l, which will reflect direction of the flow and develop
limiters which will identify adiabatic compression and turn viscosity off for such flows.

Extension of the method to three dimensions will be described in a separate paper.
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